
Grounding Large Language Models with
Natural Language World Models

Honors Thesis for the Department of Computer Science

William Xia

Tufts University, 2025



Abstract

Embodied planning tasks often require agents to use their environment to solve unfa-

miliar problems. A common obstacle when using large language models (LLMs) for em-

bodied tasks involves grounding their reasoning to the environment itself. Prior work

has used various means to ground LLMs in embodied environments, most of which

involve complex overhead architectures. Such architectures can constrain models to

specific domains, limiting their usefulness in a broader range of tasks. Additionally,

they often come with high computational requirements and introduce points of failure

that could harm agent reasoning abilities rather than enhance them. In this work, I

examine how prompting alone can be used to ground LLMs. Specifically, I determine

if LLMs can use natural language world models (NLWMs) to form accurate internal

representations of their environment. I present ESCGRIDENV, a novel 2D OpenAI Gym

environment for testing embodied reasoning and planning. Additionally, I analyze the

performance of 3 off-the-shelf LLMs at reasoning tasks within ESCGRIDENV and com-

pare their performance to that of a simple reinforcement learning agent. My results

show that NLWMs increases the likelihood that LLMs utilize elements of their environ-

ment when performing embodied puzzle solving, but that natural language alone is

insufficient for LLMs to form accurate internal representations of their environment,

suggesting a disconnect between semantic knowledge and an implicit understanding

of embodied environments, laying a foundation for future work in embodied insight

problem solving.

The implementations of ESCGRIDENV and the reasoning agents described in this

paper can be found at https://github.com/bill-from-ri/EscGridEnv Public/.
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1 Introduction

Robots operating in high-risk or inaccessible environments, including search-and-rescue

missions or extraplanetary exploration, must often solve novel problems independently

(Chitikena et al., 2023, Verma et al., 2023). In such settings, human oversight is not

guaranteed, meaning that agents must be able to autonomously generate plans and

adapt to unpredictable environmental conditions. Effective autonomous planning de-

pends on the agent’s ability to understand and leverage its environment, which requires

the ability to form accurate internal models of the agent’s surroundings.

In recent years, large language models (LLMs) have gained attention for their strong

performance in a wide range of natural language processing (NLP) tasks (Grattafiori et

al., 2024; Qwen et al., 2025; DeepSeek-AI et al., 2025). Two domains that have seen

intense research interest are reasoning and planning. Although much of the research

in this domain relates to reasoning in language domains such as puzzle solving, com-

monsense reasoning, and mathematics (Giadikiaroglou et al., 2024; Wei et al., 2023,

Plaat et al., 2024), there is also a growing body of research examining the embodied

reasoning capabilities of LLMs (Ahn et al., 2022; Dasgupta et al., 2023a).

However, within embodied domains, LLMs face a significant obstacle: they are not

inherently grounded in the physical world Ahn et al., 2022. Their knowledge, derived

from pretraining on Internet-scale text corpora, is disconnected from the specific en-

vironments in which they must act (Kambhampati, 2024). Without grounding, LLMs

risk hallucinating environment states, misunderstanding available actions, or produc-

ing plans that cannot be executed.

Therefore, grounding methods are needed for LLM agents operating in embodied

domains. Past research has explored many solutions to this problem, most of which use

external architectures to ground LLMs to their environments. Such approaches include

reinforcement learning (RL) methods (Ahn et al., 2022), continuous feedback (Huang

et al., 2022; Dasgupta et al., 2023a), knowledge representations (Shukla et al., 2023),

and symbolic world models (Dainese et al., 2024; Smirnov et al., 2024). While effective

in controlled settings, these methods suffer from several limitations.

1
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First, external grounding (especially RL methods) typically comes with an increased

computational overhead, both increasing the costs needed to train such systems, as

well as increasing the time needed for these systems to run in real-time reasoning sit-

uations (Ahn et al., 2022), factors that may limit the use of autonomous agents in

rapidly-evolving environments (Goel et al., 2022). Second, they often rely on fixed

assumptions about the environment’s structure and affordances, which can harm agent

flexibility when encountering novel scenarios (Dasgupta et al., 2023b). Additionally,

these architectures introduce additional points of failure: each added component be-

comes a potential bottleneck or source of error (Dainese et al., 2024).

In this work, I investigate whether prompting alone, using minimal architectural

additions, can sufficiently ground LLMs to their environment. Specifically, I explore

the use of natural language world models (NLWMs) and whether they are sufficient to

induce an implicit understanding of the enviroment in LLMs. Rather than encoding en-

vironment information in learned policies or symbolic structures, NLWMs offer concise

natural language descriptions of the environment’s structure and dynamics, leveraging

LLMs’ familiarity with Internet-scale natural language data to synthesize internal mod-

els of the described environment. My approach probes a potential disconnect between

semantic and implicit understanding in LLMs. That is, the difference between what

LLMs say they understand about their surroundings and the degree to which they can

perform accurate reasoning with the environment.

To test my approach, I introduce ESCGRIDENV, a novel 2D OpenAI Gym environ-

ment (Brockman et al., 2016) extended from MiniGrid (Chevalier-Boisvert et al., 2023).

This environment is specifically designed to test insight problem solving skills, as it

presents a wide array of unfamiliar objects and transition dynamics for agents to learn

and exploit. Additionally, ESCGRIDENV is constructed with a minimalist action space

and simple graphics to abstract away potential distracts, allowing LLMs to focus entirely

on reasoning and planning. ESCGRIDENV was also designed to allow for easy recon-

figuration, allowing for the creation of levels that have a wide range of difficulties. I

use this feature to test the reasoning and planning capabilities of LLMs in increasingly

difficult embodied scenarios.

To demonstrate that ESCGRIDENV tasks cannot be solved without forming an in-

ternal representation of the environment, I test the performance of a basic RL agent

on various tasks within the environment. I compare those results with humans perfor-

mance to show the importance of advanced reasoning on ESCGRIDENV tasks.

Additionally, I compare the performance of 3 off-the-shelf, open-source LLMs at

reasoning tasks within the ESCGRIDENV environment. I demonstrate the effect that

NLWMs have on planning abilities, and I also compare LLM performance with the RL
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results to show how an internal representation improves performance in embodied

planning tasks.

In summary, the contributions of this paper are as follows:

• I introduce ESCGRIDENV, a novel 2D OpenAI gym environment designed for em-

bodied insight problem solving. I demonstrate its complexity by comparing the

performance of an RL model and human participants on tasks in the environment.

• I demonstrate the performance of 3 off-the-shelf, open-source LLMs at reasoning

tasks within the ESCGRIDENV environment, and compare their results with those

of reinforcement learning agents and human participants.

• I provide a statistical analysis of prompting methods and other factors contribut-

ing to the implicit grounding of LLMs in ESCGRIDENV tasks.



2 Background

2.1 Insight Problem Solving

Insight problem solving (IPS; sometimes called creative problem solving or CPS) refers

to a multi-step problem-solving framework that has seen considerable research in both

cognitive computer science over the last few decades (Ohlsson, 1992; Boden, 2010;

Sarathy, 2018; Gizzi et al., 2022; Nair et al., 2024). IPS problems are those where

an agent’s initial concept space does not allow the agent to form a solution. Only

by experimenting with the environment and expanding the concept space can agents

overcoming these impasses and perform IPS.

How this expansion occurs may vary. Boden, 2010 defines three means of expanding

the concept space (what she defines as “forms of creativity”): exploration, combination,

and transformation. The first of these methods, exploration, is the most straightforward:

agents explore their environment and discover entirely new concepts, such as a new

object. It usually occurs when an agent is first introduced to an environment and

begins discovering the most obvious concepts available.

Combination describes the novel fusion of two or more familiar concepts to create a

new concept. An example of combinational creativity in an embodied domain would be

the attachment of a tool and a stick to increase the tool’s effective range. Combinational

creativity is one step more complicated than exploratory creativity because it requires

agents to compose together potentially disparate ideas to distill new concepts.

The final form of creativity described by Boden is transformation, wherein familiar

concepts are re-conceptualized in new ways. This is the most abstract form of creativity,

with a good example appearing in Duncker, 1945. In that study, participants needed

to re-conceptualize a box of thumb-tacks as a contain for a candle, which they were

tasked with affixing to a wall. Such tasks, defined by Sarathy and Scheutz, 2018 as

MacGyver Problems, are critical in IPS scenarios where limited resources are needed

to solve complex problems, such as when astronauts and NASA ground control had to

4
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Figure 2.1: The insight problem solving framework described in Sarathy, 2018.

create an improvised carbon dioxide scrubber during the Apollo 13 space mission.

A shared requirement across all three forms of creativity described by Boden is the

capability of agents to form an internal representation of their surroundings. Boden,

1998 describes this requirement as one of the largest barriers for computational sys-

tems attempting to emulate human IPS: “The reasons for this, in brief, are the difficulty

of approaching the richness of human associative memory, and the difficulty of identi-

fying our values and of expressing them in computational form.” Boden’s observation

was accurate for the time, but in the years since 1998, systems approaching the capa-

bilities of humans associative memory have emerged, most of which are derived from

transformer architecture Vaswani et al., 2017. In the next section, I describe the utility

of LLMs, especially in relation to IPS and related reasoning/planning problems.

2.2 Insight Problem Solving with LLMs

Large Language Models (LLMs) are advanced neural networks trained on vast corpora

of text data to predict and generate human-like language. Their architecture is based on

the Transformer model, introduced by Vaswani et al., 2017, which utilizes self-attention

mechanisms to capture contextual relationships between words in a sequence. This

design enables LLMs to process and generate coherent and contextually relevant text,

making them highly effective in various natural language processing tasks.

The capabilities of LLMs resonate with Boden, 1998’s insights on human creative

processes. Boden emphasized the richness of human associative memory as a corner-
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stone of creativity and problem-solving, noting the challenges in replicating this aspect

in computational systems. LLMs, with their ability to model complex linguistic pat-

terns and associations, represent a significant step toward emulating the associative

processes inherent in human cognition.

In tasks requiring reasoning and planning, particularly within disembodied do-

mains, LLMs have demonstrated remarkable proficiency. Techniques such as chain of

thought (CoT) prompting, as explored by Wei et al., 2023, guide LLMs through inter-

mediate reasoning steps, enhancing their performance in complex tasks such as arith-

metic, commonsense reasoning, and symbolic logic (Giadikiaroglou et al., 2024; Plaat

et al., 2024). Because these domains are primarily language-based, they allow LLMs

to operate effectively without the need for additional grounding in physical or sensory

contexts.

In this work, I focus on planning in embodied domains. Within the IPS framework

(see Figure 2.1), planning is a necessary step both in the initial “Focused Mode” set-

ting as well as in the later “Unfocused Mode” setting. In embodied domains, agents

requires a rich, implicit understanding of the environment to plan effectively. However,

past methods have not needed such levels of understanding. Historically, embodied

problem solving been dominated by RL agents. These models use extensive training to

learn tasks, consequently encountering trouble adapting to novelties, such as new ob-

jects and even new configurations of the environment (Shukla et al., 2023, Goel et al.,

2022). In the ESCGRIDENV task, where learning precise object interactions is critical

to solving tasks, and rewards are often sparse, RL approaches becomes infeasible with-

out monstrously long training times and/or significant overhead in the form of custom

reward design and/or hierarchical methods.

More recently, LLMs have gained attention for their performance in embodied rea-

soning tasks. They have achieved success primarily through approaches that seek to

ground language models to the action space of embodied agents and the transition dy-

namics of the environment. In the next section, I discuss various past approaches for

grounding LLMs in embodied domains.

2.3 Grounding Techniques

Past work has explored various methods to integrate LLMs into embodied reasoning

tasks. For instance, Ahn et al., 2022 introduces SayCan, which grounds LLMs using a

“learned value function”, a reinforcement learning model used to determine the feasi-

bility of natural language instructions given the capabilities of the LLM’s embodiment
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as well as the environment the embodiment is acting within. SayCan also utilizes a

vision model to ground its planner to images of the environment.

Another common form of grounding is continuous feedback. Huang et al., 2022

leverages LLMs’ ability to generate self-dialogue, allowing agents to plan and adjust

actions through internal reasoning processes with continuous feedback. This approach

uses multi-modal feedback to provide LLMs with a diverse set of information with which

to condition its actions.

Dasgupta et al., 2023b also incorporates continuous feedback into their framework.

They do so by introducing a three-module system consisting of a Planner, an Actor,

and a Reporter. The LLM-powered Planner performs all the reasoning while the Actor

executes actions within the environment and a Reporter provides language feedback to

the Planner based on the results of the agent’s actions.

Symbolic grounding methods have also been explored to improve the performance

of LLM reasoning and planning in embodied domains. For example, Dainese et al.,

2024 tasks LLMs with building world models out of code. First proposed in RL re-

search (Ha and Schmidhuber, 2018), a world model predicts the underlying dynamics

of how actions taken by agents within an environment transition the environment to

new states. In Dainese et al., 2024, the researchers develop a method to represent

the environment’s transition dynamics using code, which can be executed by an LLM

to predict the result of actions taken within the actual environment. They present an

intricate code review system used by their framework to ensure that generated code is

syntactically correct and accurate to the environment it is modeling.

A relatively lightweight approach to grounding can be founding in Cheng et al.,

2024, where instructions given to LLMs include object affordances, which the LLM se-

lects from for its actions based on a probabilistic feasibility function. Object affordances

are a concept introduced first in Gibson, 1979 and later refined by Chemero, 2003. In

essence, affordances are relationships between objects in the environment and agents

acting within the environment, where new action possibilities are created based on

the capabilities of the agent and the transition dynamics of the environment. Impor-

tantly, they exist only as surface features of the agent-environment relationship. They

merely describe action possibilities, not the consequences of those actions. As such, the

amount of information they provide is much less than what is provided by a full world

model, which seeks to represent both the ways in which the agent and environment

can interact, as well as the result of those interactions.

While all of these methods have shown promise, most involve extensive architec-

tural overheads, which can increase computational overhead and introduce potential
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points of failure. In contrast, my approach seeks to simplify the grounding of LLMs into

embodied reasoning tasks by minimizing architectural complexity. It remains unclear

how much of grounding is needed for an LLM to form an implicit (not just declarative)

understanding of its environment. This distinction is important, as an LLM may be able

to explain the transition dynamics of an environment without being able to model them

effectively.

I propose using natural language world models (NLWMs) to provide LLMs with

textual representations of their environments. This method aims to ground LLMs using

language alone, determining if they can form internal representations of their surround-

ings without relying on additional sensory inputs or complex external architectures. I

elaborate on my definition of NLWMs in 5.2.1.



3 The EscapeGrid Environment

In this section, I discuss on the design of the ESCGRIDENV environment, including the

environment’s design philosophy, the work that inspired it, novel objects added to the

environment, and how I extended the the original MiniGrid (Chevalier-Boisvert et al.,

2023) API to accommodate the functionality introduced by the EscapeGrid library.

3.1 Design Philosophy

The primary aim of ESCGRIDENV was to construct an embodied environment that

meaningfully tests agents’ ability to perform IPS. While designing EscGridEnv, I pri-

oritized three core principles:

1. Optimization for Insight Problem Solving (IPS). The environment is structured

to require the discovery and exploitation of novel interactions between objects

(i.e. hidden transition dynamics). It therefore rewards agents that are best at un-

derstanding and executing on the complexities of the environment and penalizes

those that rely on rote memorization of successful action sequences.

2. Simplified Action Space and Visuals. The environment minimizes action space

complexity by constraining agent capabilities to basic locomotion primitives. This

ensures that problem difficulty stems primarily from environmental understand-

ing rather than from mechanical skill acquisition. For similar reasons, ESCGRI-

DENV needed to be visually simple so as to avoid the need for advanced vision

encoding methods.

3. Configurable Difficulty. ESCGRIDENV allows for flexible tuning of problem com-

plexity through the modular combination of objects and discoveries, enabling

structured tests of agent capabilities across varying levels of challenge. The pur-

pose of this design principle is to determine the limits of AI agents in embodied

reasoning tasks.

9
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Figure 3.1: Example configuration of the ESCGRIDENV environment.

This design philosophy differentiates ESCGRIDENV from many previous 2D simula-

tion environments, as discussed below.

3.2 Previous Work with 2D Simulation Environments

Several environments have previously been developed for studying embodied problem

solving, but each has limitations that EscGridEnv seeks to address:

OpenAI Gym (Brockman et al., 2016) provides a broad benchmark suite primar-

ily aimed at reinforcement learning. Gym environments generally emphasize action

and visual perception challenges rather than logical reasoning tasks. Even still, this

suite remains versatile enough to be extended in ways more conducive to my study, as

discussed below.

PDDLGym (Silver and Chitnis, 2020), extended from OpenAI Gym, introduces envi-

ronments framed through symbolic PDDL specifications, focusing on logical planning.

However, it’s focus is strongly tied to PDDL planning, a symbolic approach that is at

odds with my intent of using natural language only. Additionally, PDDLGym does not

offer systematic control over problem difficulty through layered discoveries, instead

presenting a wide variety of tasks that have no clear difficulty hierarchy in relation to

one another.

MiniGrid (Chevalier-Boisvert et al., 2023), also extended from OpenAI Gym, offers

a lightweight, flexible 2D grid environment tailored for RL agents. MiniGrid’s strengths
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lie in its ease of customization and simple visual outputs. However, its transition dy-

namics are fairly simple, with only a single interaction that can be discovered via com-

binational creativity, limiting the depth and richness of discovery processes.

ESCAPE (Sarathy et al., 2024) is a framework for testing human insight problem

solving across increasingly difficult levels. Although ESCAPE emphasizes concept dis-

covery and problem restructuring, it is not engineered for direct machine learning in-

terfaces or for training embodied agents.

EscGridEnv builds on these methods by combining the customizability of MiniGrid

and the layered discovery elements of ESCAPE to create a unique platform for investi-

gating embodied insight problem solving in artificial agents.

3.3 The ESCGRIDENV Environment

3.3.1 Observations and Action Space

In many ways, ESCGRIDENV remains very similar to MiniGrid. It is a modular 2D

OpenAI Gym environment made up of n × m tiles, where each tile is either empty or

occupied by an object (e.g., a wall, crate, or goal). I discuss objects in more detail in

the next subsection.

Every time an action is executed in the environment (via the step function), an

observation is returned, which is formatted in the same way as observations returned

by native MiniGrid: a top-down view of the entire environment, with each tile encoded

as a 3-tuple. The elements of the 3-tuple represent: the index of the object, the index

of the object’s color, and 0.

The first major change from native MiniGrid is in the action space. MiniGrid has

an action space with seven options, which I have constricted to three fundamental

action primitives: turn-left, turn-right, and move-forward. This constriction was

implemented to mimic the action space in Sarathy et al., 2024. In that study, the

researchers demonstrate a sizable concept space that can be accessed solely through

movement through the environment. By combining these action primitives, human

participants could execute a wide variety of high-level plans. By heavily restricting the

action repertoire, EscGridEnv ensures that challenge stems primarily from cognitive

understanding of object relationships rather than complex motor control.
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3.3.2 Objects and Transition Dynamics

Within the environment, I also introduce a collection of new WorldObj classes, which

I define as a subclass of WorldObj called EscObj. EscObjs differ from the objects in

native MiniGrid in two major ways. The first is that they are rendered with much more

abstracted graphics. While MiniGrid uses distinctive visual representations of keys,

doors, and lava, ESCGRIDENV uses colored squares for all EscObjs. The purpose of

this change is to prevent models from relying on internal biases to perform problem

solving, as the goal of ESCGRIDENV is to test the ability of agents to learn entirely

foreign concept spaces via insight problem solving.

Herein lies second major difference between EscObjs and MiniGrid: the complexity

of the environments’ transition dynamics. In MiniGrid, most objects can only interact

with the agent (the key and door being the only exception). ESCGRIDENV is a complex

environment, where most EscObjs can interact with each other with the agent’s inter-

vention. The discovery of these interactions requires the initial discovery of properties

associated with the individual objects in each interaction. The following is a full list of

multi-object transition dynamics added in ESCGRIDENV:

• Crates, Buttons, & Doors. Pushing a crate (using the move-forward action while

the agent is adjacent to and facing an orange object) toward an adjacent but-

ton (pink object) will open all ButtonDoors (blue objects) in the environment.

Discovering this relationship requires the discovery that crates can be pushed.

• Keys & Doors. While holding a key (yellow object), the agent can walk into

a KeyDoor (cyan object) to open it permanently. Discovering this relationship

requires the agent to first discovery that moving into a key will cause the agent to

pick up the key, turning it purple.

• Crates & Keys. Pushing a crate into a key will cause the key to disappear and

the crate to turn into a KeyCrate (purple object). Additionally, pushing a crate

while holding a key also causes the crate to turn into a KeyCrate. Upon doing so,

the key disappears from the agent’s possession. KeyCrates can be pushed into a

KeyDoor to open the door permanently. Discovering this relationship requires the

discovery that crates can be pushed.

• KeyCrates & Crates. Pushing a KeyCrate into a Crate will turn the Crate into a

KeyCrate, thus allowing the agent to duplicate KeyCrates. This discovery can help

solve problems that require the agent to open more KeyDoors than there are Keys

in the environment.
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In addition to the objects listed above, there is one other EscObj introduced in ES-

CGRIDENV: the FalseWall (brown object). This object appears to be a normal wall,

but can be moved through. Crates and KeyCrates can be pushed through FalseWalls

as well. The FalseWall introduces another discovery that the agent may have to learn

to reach a Goal in the ESCGRIDENV environment. For many configurations of ESCGRI-

DENV, this property was the only one needed to solve the task. For example, Figure 3.1

can be solved by ignoring all other objects and moving forward 14 times (through a

FalseWall), turning right, then moving forward 1 more time.

Put together, the new EscObj classes introduce a host of new objects and discoveries

that must be made by the agent to accomplish its tasks. By adding multiple discover-

ies to the same environment, we can sequentially increase the difficulty of problems

that agents must solve. Such a sequential difficulty system would allow us to more

accurately measure the problem-solving capabilities of our models.

The process of discovery for puzzle solving has been explored in the past using

GridWorlds similar to MiniGrid (Goel et al., 2022; Shukla et al., 2023). As in our work,

the combination of multiple novelties is used to generate more complexity and more

discoveries the agent must make.

3.3.3 Level Configuration

The ESCGRIDENV constructor contains a field called grid layout, which can be used to

initialize the starting configuration of objects in the environment. grid layout expects

a 2D matrix of strings, each of which must correspond to an object in the ESCGRI-

DENV environment. Table 3.1 shows the mapping of acceptable strings in grid layout

and their corresponding objects. Note that unlike EscObjs, the agent in placed in

the environment with the ESCGRIDENV constructor parameters agent start pos and

agent start dir, just as in MiniGrid.
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Object String Encoding

Wall ‘w’

Goal ‘g’

Crate ‘c’

Button ‘p’

ButtonDoor ‘d’

PuzzleKey ‘k’

PuzzleKeyDoor ‘t’

FalseWall ‘f’

None ‘’

Table 3.1: Object – String Encoding Mapping



4 Reinforcement Learning Experiments

To demonstrate that ESCGRIDENV requires agents capable of forming internal represen-

tations of their environment, I test the performance of a simple PPO agent Schulman

et al., 2017 on various configurations of the ESCGRIDENV environment. The hypoth-

esis I seek to prove is that PPO agents, which have no means of forming environment

representations on their own, will fail to effectively learn how to perform tasks in ESC-

GRIDENV.

I compare the results of PPO agents to that of human participants, whose perfor-

mance is presented in Sarathy et al., 2024. To ensure that results are comparable, I

design a suite of ESCGRIDENV configurations to match the configurations used in that

study.

4.1 Experiment Setup

I begin by formalizing the components of this experiment. The ESCGRIDENV action

space is represented as A = {turn-left, turn-right, move-forward}. Every timestep

t, the environment outputs observation from the observation space, ωt ∈ Ω. Each

observation ωt is outputted by the environment’s transition function T : (Ω, A) → Ω,

The PPO agent itself operates according to a trained policy π : Ω → A. Every

timestep t, the agent receives ωt and outputs at back to the environment, which uses T

to determine ωt+1.

Training and Testing

The PPO agent was trained on the Level 1 configuration (explained in Section 4.1.1) to

emulate conditions faced by human participants in Sarathy et al., 2024. Just as human

participants were expected to perform the rest of the levels after only receiving Level 1

as guidance, so too was the LLM given only Level 1 to train with.
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Training was performed across 5e5 episodes with a discount factor of 0.99 on an

NVIDIA RTX A6000 GPU.

The PPO agent was then evaluated on levels 1, 3, 5, 9, 11, and 12. These levels

were chosen because they each introduce a new discovery (except for level 12, which

tests agents on their understanding of all discoveries). The agent was evaluated on

each level 100 times according to two binary metrics:

• Interaction. Each level has an associated discovery (or discoveries) that are con-

sidered necessary for the agent to find before it can complete the puzzle. For

each run, I determined whether or not the agent performed an action that would

reveal the discovery for that level (e.g. walking through a FalseWall, opening a

KeyDoor). I explain what each level’s associated discoveries are in Section 4.1.1.

• Completion. As a harder metric than Interaction, I use level completion as a

measure of agent performance. Completion is achieved when the agent reaches

the Goal object.

4.1.1 Levels

Below, I provide a brief description of each ESCGRIDENV configuration used in this

experiment. Each was inspired by a corresponding configuration used in Sarathy et

al., 2024. The initial state of each configuration can be found in Figure 5.2. Each

configuration presents the agent with the same task: reach the green object.

• Level 1 is the simplest of the environment configurations, with just a ring of False-

Wall objects and an easily accessible Goal object. It can be solved by moving

forward in a straight line. The discovery associated with this level is the agent’s

ability to move through the FalseWall.

• Level 3 presents three new objects: the Crate, the Button, and the ButtonDoor. In

can be solved in two ways: opening the ButtonDoor and moving through the hole

in the FalseWall ring, or moving through the FalseWall to reach the Goal. The

discovery associated with this level is that pushing a Crate onto a Button opens

the ButtonDoor.

• Level 5 introduces the Key and KeyDoor. Like the previous level, it can be solved

either by leveraging the new objects, or by moving through the FalseWall ring to

reach the Goal. The discovery associated with this level is the agent’s ability to

pick up a Key and use it to open a KeyDoor.
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• Level 9 combines the objects featured in the previous two levels, requiring agents

to either push Crates and pick up the Key, or exploit the FalseWall property to

solve. It has two “intended” discoveries, either of which could be found for the

Interaction metric to be satisfied. Those discoveries were the Crate-Button dis-

covery as well as the Key-KeyDoor discovery.

• Level 11 is the first configuration that cannot be solved by exploiting the FalseWall

discovery. Instead, the agent must open the ButtonDoor to reach the Goal. As with

the previous level, it has two associated discoveries: the FalseWall discovery and

the Crate-Button discovery.

• Level 12, like the previous level, prevents the agent from exploiting the FalseWall

discovery to succeed. In this level, the agent must make use of KeyCrates, which

are the most complex dynamics in the environment. Its associated discoveries

were the KeyCrate creation discovery as well as the Key-duplication discovery

that is made using KeyCrates.

Note that for some levels, the intended discovery is not needed for the level to

be solved. This is happens when the agent exploits the FalseWall property on levels

where doing allows the agent to bypass the intended discovery. In instances like these,

we can determine that the agent does not know how to use the other objects in the

environment, and instead relies entirely on what it learned during training.

4.2 Results

The results of the reinforcement learning experiments show that while the RL agent

excelled on several levels, there is a massive drop-off in completion rates on levels

that where the Goal was not placed in the exact same spot as in Level 1. This result

may indicate that the RL agent learned the movements needed for task completion

rather than the actual properties of the environment itself. Considering the training

regiment used for the RL agent, this behavior makes sense––having never learned the

importance of objects other than FalseWalls and Goals, the agent could get away with

simply learning to move towards the coordinate (19, 8).

More interesting findings appear when we examine the performance of the RL agent

along the Interaction metric. For the most part, the agent does not make the discovery

“needed” for each level. There’s an exception in the case of Level 5 however. In this

level, the agent can simply walk forward 14 times and pass the level, just as in Level

1. As such, the agent could complete the whole level by executing the same movement
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Figure 4.1: Comparison between PPO model and human participants.

sequence it learned in Level 1. This result indicates that agents are capable of exploiting

discoveries even if they don’t have a way of understanding those discoveries.

In addition to the definitive metrics used to evaluate the RL agent in this experiment,

I assembled a GIF of all several runs of the experiment by layering all the runs of a single

level on top of one another. The GIFs can be found in the public GitHub repository

associated with this project. The GIFs reveal why the agents may have done so well

in Level 5 compared to some of the other levels. Essentially, when the agent picks up

the Key in Level 5, the configuration of the environment becomes very similar to that

of Level 1. As soon as the KeyDoor is unlocked, the configuration becomes identical.

Therefore, there aren’t many chances for the new objects to cause confusion in the RL

agent’s action policy.

Level 3, on the other hand, has myriad ways of causing confusion. To start, there is

one more new object in Level 3 compared to Level 5. Additionally, when the agent is

pushing the Crate, the Crate does not disappear, meaning that the environment changes

in unexpected ways every time the agent takes a step while pushing the Crate. Put

together, these factors appear to confuse the agent greatly, as the overlays show that its

actions become far less predictable as soon as the agent touches the Crate.
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4.2.1 Implications

The results of the RL experiment, especially when compared to human performance

from identical levels in Sarathy et al., 2024, reveal several key takeaways. The first

is that matching human performance in ESCGRIDENV requires a human-like ability to

understand the environment. The levels that are sufficiently different from Level 1 were

all basically impossible for the RL agent to complete, indicating the need for an internal

representation of the environment’s transition dynamics that RL agents don’t possess

on their own.

Another important takeaway is the fact that discoveries can be made without un-

derstanding their utility. This is shown in the Level 5 results, where the RL agent scores

high on interaction despite not knowing about the Key-KeyDoor relationship.

Put together, these results show that with the right configuration, ESCGRIDENV can

easily be used to test agents for qualities needed for IPS, including the ability to form

an internal representation of the environment.



5 Large Language Model Experiments

To determine the effect of NLWM prompting on LLM environment utilization, I designed

an experiment to test the following hypotheses:

1. H1: LLMs are more likely to make use of relevant objects within the environment

when provided with the transition dynamics of the environment.

2. H2: LLMs are more likely to complete configurations of ESCGRIDENV when pro-

vided with the transition dynamics of the environment.

5.1 Experiment Setup

In Section 4.1, I formalized the environment in the context of the RL experiment. I will

now expand upon that formalization to describe the LLM experiment.

The LLM agent possesses a Perception module P : Ω → S, where S represents

the encoded state space of the environment. This is how the agent represents the

environment for reasoning purposes. I explain later the precise forms that states s ∈ S

can take.

For every run of the LLM experiment, the agent generated a prompt p = τ(s), where

τ : S → p is a template that takes in state information and (optionally) information

about transition dynamics in the environment. The prompt is then fed to LLM Plan-

Actor Π : p → η, where η is a string output containing both a high-level plan and a

low-level action sequence based on the generated plan.

After the action sequence is generated, each of its actions are executed in sequence

by transition function T , transitioning the environment from its initial state to its final

state. This architecture was inspired by the Planner-Actor-Reporter system presented

in Dasgupta et al., 2023b, though it differs in a few ways. First, I condense the Planner

and Actor modules into a single Plan-Actor. Because of how simple the action space

20
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Figure 5.1: Illustration of all the components of the experiment.

is, there is no need for a separate module to handle motion control. Additionally, my

system does not incorporate continuous environment feedback as a form of grounding.

Instead, each run tasks the LLM with completed the puzzle in a single prompt-action

cycle.

Each combination of independent variables (described below) was evaluated ac-

cording to 5 separate runs. All runs were allowed as many steps as the LLM provided,

and were performed on an NVIDIA RTX A6000 GPU.

5.2 Independent Variables

In addition to the use of NLWMs, I evaluated the effect of four other independent vari-

ables on LLM performance in this experiment. Together, the five independent variables

of my experiment were:

• NLWMs: With and without a natural language world model.

• Puzzle Difficulty: Six different configurations of the environment that each re-

quire different discoveries to solve.

• Vision Encoding Method: 2D Matrix, Text

• Prompting Techniques: Base, CoT (Wei et al., 2023)

• Model: Llama3:70b (Grattafiori et al., 2024), Qwen2.5:14b (Qwen et al., 2025),

Deepseek-R1:8b (DeepSeek-AI et al., 2025)
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Figure 5.2: ESCGRIDENV configurations used in my experiments. Starting from the top
left going clockwise, they are Levels 1, 3, 5, 12, 11, 9.

5.2.1 Natural Language World Models

In the context of this study, I define a natural language world model (NLWM) to be a

list of statements about the environment describing the transition dynamics associated

with each object found in the current configuration. The information contained in an

NLWM should always be sufficient to solve the current configuration of the environ-

ment. Below is an example NLWM for Level 3:

• The green object is the Goal that the agent must reach.

• Brown objects are FalseWalls. The agent can move through FalseWalls.

• The orange object is a Crate. The agent can push the Crate by moving towards it

while adjacent to the Crate.

• The pink objects is a Button. When the Crate is pushed onto the Button, the

ButtonDoor opens.

• The blue object is a ButtonDoor. When the Crate is pushed onto the Button, the

ButtonDoor opens. The agent cannot move through the ButtonDoor while it is

closed.

5.2.2 Puzzle Difficultly

The difficulty of puzzles was modulated using six different configurations of the ESC-

GRIDENV environment, each described in Section 4.1.1. I chose the same configurations

so I could draw comparisons between human, RL, and LLM results.
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Figure 5.3: Comparison between visual representation and the two encoding methods.

5.2.3 Observation Encodings

One of the primary challenges of embodied reasoning for LLMs is that the observation

space must be converted from the native representation to a text representation for

LLMs to understand. I compare two different methods of observation encoding and

how well LLMs are able to interpret embodied environments.

The first method encodes ESCGRIDENV observations as 2D Python matrices, with

each cell in the matrix corresponding to a cell in the ESCGRIDENV environment. Ob-

jects in the environment are represented by their color only, thereby obscuring any

information that could reveal how objects can be used without directly interacting with

the objects themselves. This method preserves the spacial structure of the environment

while translating the environment into a form that the LLM may be more familiar with.

Because these LLMs are pretrained on large quantities of Python code, I predicted that

they would have an easier time understanding these observations compared to visual

observations of the environment.

The second method encodes ESCGRIDENV observations into high-level natural lan-

guage descriptions. By sacrificing detail, this representation is able to provide the LLMs

with observations that are more understandable than data structure representations.

This method lists the coordinate positions of key objects in the environment while ab-

stracting away less pertinent details. For example, the position of each FalseWall object

is condensed into a single sentence describing a barrier of brown objects around the

rest of the objects in the environment. As with the matrix encoding method, objects

were referred to by their color only, requiring their utilities to be discovered through

interaction alone.

Figure 5.3 provides a visual comparison between the two encoding methods and

how they translate environment observations into text.
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5.2.4 Prompting Methods

I compare the performance of two different prompting strategies: a straightforward

zero-shot prompting method and a single-shot chain of thought prompting method.

The former provides the LLM with just an observation of the environment and a simple

instruction prompt regarding the task and action space of the environment.

With the chain of thought (CoT) prompting method, I follow the methodology first

described in Wei et al., 2023, wherein LLMs were provided with a step-by-step algo-

rithm for solving the task at hand via single-shot prompting in addition to the initial

instructions. The example provided in my CoT prompts uses Level 2 from ESCAPE

(Sarathy et al., 2024). I chose this example because it was similar enough to Level 1 to

provide just as little information about the rest of ESCGRIDENV’s transition dynamics,

while still being different enough that it didn’t provide the exact solution to Level 1

itself.

Further details regarding prompting can be found in Appendix A.

5.3 Metrics - Operationalizing the Hypotheses

As with the RL experiments, each run of the LLM was evaluated according to two binary

metrics:

H1: Interaction. Each level has an associated discovery (or discoveries) that are

considered necessary for the agent to find before it can complete the puzzle. For each

run, I determined whether or not the agent performed an action that would reveal the

discovery for that level (e.g. walking through a FalseWall, opening a KeyDoor, etc.).

The purpose of this metric is to show whether or not LLMs are capable of making

use of the knowledge they’ve been given via natural language. It is meant to be an

indicator that semantic knowledge translates to implicit understanding.

H2: Completion. As a more concrete metric than interaction, I use level completion

as a measure of agent performance. Completion is achieved when the agent reaches

the Goal object.

Completion shows more definitive proof of grounding. Because the transition dy-

namics given in every run are sufficient to solve the problem with, an LLM capable

of translating semantic knowledge into implicit understanding should be able to score

very high on Completion.



6 Large Language Model Results

In this section, I analyze the effect of each independent variable on task performance

across the two metrics defined in the previous section. Additionally, I perform a quali-

tative analysis on three example runs to show how LLMs reasoning about tasks in the

ESCGRIDENV environment.

6.1 Effect of Natural Language World Models

Figure 6.1 shows the effect that NLWMs have on agent performance in ESCGRIDENV.

The results indicate that NLWMs increase Interaction (p = 0.0015), but have no ef-

fect on Completion rate. This indicates that while NLWMs grant LLMs some degree of

implicit understanding, the grounding they provide is not sufficient to significantly im-

prove performance, revealing a disconnect between semantic knowledge and implicit

grounding in ESCGRIDENV.

6.2 Effect of Puzzle Difficulty

Performance across both metrics varied between each puzzle configuration, suggesting

Interaction and Completion rate are dependent on factors more specific than mere

difficulty. That being said, there are a few key observations that can be made in regards

to the affect of level configuration on agent performance.

Interaction appears to be most correlated with how many steps it takes for the

agent to reach the nearest object. That is, in configurations where objects were placed

relatively close to the agent, it was far more likely for them to make the intended

discovery for that level. Meanwhile, Completion only rises above 2% in the levels

where the most straightforward solution was to simply move forward until the agent

reached the goal, suggesting that LLMs may have trouble generating more complex

plans.
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Figure 6.1: Effect of NLWM prompting by metric.

Figure 6.2: Effect of puzzle difficulty by metric.
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Figure 6.3: Effect of encoding method by metric.

Comparing the LLM results to the RL results for the same levels (Figure 4.1), I

observe significantly higher performance from the RL agent on the levels that only

require the FalseWall discovery to solve. This raises the question of how useful an

internal representation of the environment is. In Section 7, I answer that question

by comparing the performance of an RL agent against that of an LLM agent on levels

where moving in a straight line is not sufficient to solve the task.

6.3 Vision Encoding Method

Natural language descriptions outperform matrix encodings of environment observa-

tions, with statistically significant increases in Interaction (p = 0.0174) and Complete-

ness (p < 0.0001). This improvement is likely due to how the LLMs used for this exper-

iment (all off-the-shelf) were fine-tuned. Because they were all primarily fine-tuned on

natural language data, these models were ability to understand the natural language

descriptions more fluently than the matrix encodings, which would likely require spe-

cialized fine-tuning to understand fluently.

Fluency in natural langauge may not be the only reason why the descriptions im-

proved overall model competence. Because the natural language descriptions included

coordinates for objects in the environment, it’s possible that the models were able to use

coordinate arithmetic to solve the puzzles more easily. However, proving such a state-

ment would require a more in-depth analysis of the LLM reasoning traces, as shown in

Section 6.6.
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Figure 6.4: Effect of prompting technique by metric.

6.4 Prompting Technique

By guiding models to follow a step-by-step problem-solving routine, the Chain of Thought

(CoT) prompting technique successfully increased the likelihood that models completed

configurations of ESCGRIDENV (p = 0.0234). However, CoT did not significantly outper-

form zero-shot prompting in the Interaction metric (p = 0.1129). These results indicate

that CoT encouraged agents to behave similarly to the RL agent, in the sense that the

LLMs learned successful movements in-context rather than more implicit reasoning and

problem-solving abilities.

These results may indicate that further exploration of prompting techniques could

greatly improve the overall competency of embodied LLM agents. For example, my

single-shot CoT prompting could easily be improved by providing more examples. Ad-

ditionally, there exist more rigorous prompting strategies that could outperform CoT in

the metrics defined in this study.

6.5 Model

Between the 3 models evaluated for this study, Llama3 and Qwen2.5 significantly out-

perform DeepSeek-R1 in both metrics (see p-values in Table 6.1). This difference may

be due to the differences in size between the evaluated models, though there may be

other factors at play, since neither the 70-billion parameter Llama model nor 14-billion

parameter Qwen model significantly outperform each other in either metric.
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Figure 6.5: Effect of model choice by metric.

Llama Qwen DeepSeek

Llama – 0.3130 | 0.1538 0.0025 |< 0.0001
Qwen 0.3130 | 0.1538 – < 0.0001 | 0.0078
DeepSeek 0.0025 |< 0.0001 < 0.0001 | 0.0078 –

Table 6.1: Pairwise p-values for performance difference between Llama3, Qwen2.5, and
DeepSeek-R1. The first value is for Interaction and the second is for Completeness.

Factors besides size that may affect model performance may include the specific data

used to pretrain and fine-tune each model or DeepSeek’s built-in reasoning capabilities

causing distractions rather than aiding with planning.

6.6 Qualitative Analysis

To supplement the automated metrics used for this study, I examine three example runs

to compare LLM reasoning traces to their cooresponding action sequences. The purpose

of this analysis is to show the disconnect between semantic understanding of the envi-

ronment (represented as the high-level plan) and the LLMs’ implicit understanding of

ESCGRIDENV (represented as the low-level action sequence).

Table 6.2 shows the independent variable settings and reasoning trace for each ex-

ample. Visualization of the corresponding action sequences can be found in the GitHub

repository associated with this project.
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Ex. Settings Reasoning Trace

1 No NLWM,

Zero-Shot,

Llama, Text,

Lvl 12

Move to the goal object by following these high-level steps:

1. Move RIGHT until reaching the edge of the brown border

at (17, 8).

2. Move DOWN until reaching the opening in the enclosure

at (18, 7).

3. Move RIGHT until reaching the cell containing the green

object at (19, 9).

2 With NLWM,

Zero-Shot,

Qwen, Text,

Lvl 5

The high-level plan for the agent to achieve its goal involves nav-

igating through an environment with various objects that affect

the state of the agent in different ways. Here’s a step-by-step

high-level plan:

1. The first action would be to move from (5,8) to (6,8), then

continue moving right until reaching the opening at (18,

8). To avoid purple status before reaching cyan square, it

is essential not to interact with yellow squares until neces-

sary. Therefore, stay on path while avoiding yellow object

and head straight for goal.

2. Once the agent reaches the opening at position (18,8),

there is a cyan object in that cell. It should be noted

that stepping on this cyan square will only disappear when

the player is purple. To properly use the cyan square, the

agent must first become purple by moving onto the yellow

object located at (13, 8).

3. After turning purple, continue moving right to get to the

cyan object and cause it to disappear once stepped on.

4. Then move one space further in that direction to reach the

goal object which is green and located at position (19, 8).

3 No NLWM,

Zero-Shot,

DeepSeek,

Matrix, Lvl 1

Go RIGHT, DOWN, LEFT, UP, RIGHT, DOWN, LEFT, RIGHT,

DOWN, LEFT, RIGHT, DOWN, LEFT, RIGHT, DOWN, LEFT

Table 6.2: Example reasoning traces for qualitative analysis.
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6.6.1 Example 1

The reasoning trace for this example shows a clear misunderstanding of how to navigate

a coordinate grid. For example, the LLM plans to move down in step 2, which should

increment the y-coordinate (like MiniGrid, ESCGRIDENV uses the top-left corner as (0,

0)). However, instead of incrementing the y-coordinate, the LLM increments the x-

coordinate and decrements the y-coordinate. This confusion shows that LLMs have

difficulty making sense of objective coordinate positions.

The agent’s movements within the environment are fairly faithful to the generated

plan, showing that the LLM’s words are reflected (if only to a limited degree) in its

implicit understanding of the environment.

6.6.2 Example 2

This example shows how an LLM makes use of its enhanced semantic knowledge of the

environment. The resulting reasoning trace shows that even with the extra knowledge,

the model’s internal representation of the environment remains weak. Qwen makes

the unfounded assumption that it must wait to pick up the Key until it reaches the

KeyDoor. In doing so, its plan requires the agent to double back and retrieve the Key

after reaching the door. The hallucinated assumption is likely an artifact of the model’s

pretraining or fine-tuning, as there was no indication in the original prompt that such

an assumption needed to be made.

The action sequence associated with this plan is not entirely faithful. By moving

in a straight line towards (18, 8), the agent picks up the Key earlier than expected.

When it tries to double back, the agent does not retreat far enough (not that doing

so was necessary anymore). It then fails to return to its previous position, so its final

movement to the right does not take the agent to the Goal.

6.6.3 Example 3

Example three demonstrates a failure of reasoning. Despite the simplicity of the con-

figuration, the agent fails to identify a goal or provide any justification for its actions.

It instead provides a nonsensical action sequence that carries the agent in a circle. This

action sequence is accurately executed by the agent, indicating a possible tradeoff be-

tween the complexity of plans and the accuracy with which the agent is able to execute

those plans.



7 Reinforcement Learning vs. LLMs

To better understand the role of internal world models in agent performance on em-

bodied tasks, I conducted a targeted comparison between a reinforcement learning (RL)

agent and a large language model (LLM) in the ESCGRIDENV environment. This exper-

iment was performed on variants of Level 5 from the previous experiments. While the

RL agent demonstrated high success in the base configuration of Level 5, its behavior

on the later variants suggest a tendency to memorize action sequences rather than de-

velop an understanding of the environment’s dynamics. This experiment tests whether

LLMs, despite their lack of embodied experience, can leverage their parametric memory

to form implicit representations of task structure that support better generalization.

7.1 Experiment Setup

To determine if an internal representation of the environment improves generalization,

I created four variants of Level 5, each modifying the Goal object’s position slightly

while leaving the rest of the map unchanged. This manipulation was designed to penal-

ize strategies based on fixed action sequences (e.g., RL memorization) while rewarding

strategies that relied on a more nuanced understanding of the environment.

For the RL side of the experiment, I reused the policy trained for the original RL

experiment and ran it on each variant 100 times. For the LLM, I used the highest-

performing configuration from the previous chapter—Llama with NLWM, text-based

observation encoding, and CoT prompting—and evaluated it 20 times per variant. Fig-

ure 7.1 shows the level layouts used in this experiment.

7.2 Results

The RL agent performed well on the initial Level 5 configuration, reliably unlocking the

KeyDoor and progressing toward the Goal. However, its success rate quickly dropped
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Figure 7.1: Level 5 Variants.

as the Goal object was moved even a single tile from its original position. This suggests

that the agent relied on a memorized sequence of actions rather than adapting its

behavior based on the Goal’s position. This claim is supported by the RL agent’s high

Interaction score; the RL agent did not demonstrate meaningful spatial generalization

and instead moved straight towards the tile where it expected success, rather than the

object that would reward success.

In contrast, the LLM exhibited modest performance on the original Level 5 variant

but maintained a relatively stable success rate across all goal-shifted variants. This

stability indicates that the LLM was not rigidly following a fixed path but instead guided

its behavior by interpreting the utility of objects in the environment, especially the Goal

object.

Interestingly, the LLM performed worse than the RL agent on the Interaction metric

(i.e., unlocking the KeyDoor), suggesting that it either did not fully grasp the purpose of

the Key-KeyDoor interaction or chose to ignore it. Further inspection revealed that the

LLM frequently exploited the FalseWall mechanic instead, suggesting a possible prefer-

ence for simpler, less cognitively demanding solutions, even when a more emphasized

“correct” solution (via Key-KeyDoor) was explicitly provided by the NLWM. This prefer-

ence highlights both the flexibility and the limitations of LLM planning: while the LLM
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Figure 7.2: Level 5 Variant Results.

was able to adapt its strategy, it may also overlook multi-step dependencies in favor of

more direct paths.

7.2.1 Implications

These results suggest that LLMs are capable of forming limited but meaningful inter-

nal representations of their environment, sufficient to guide adaptive planning in novel

configurations. Unlike the RL agent, which collapses when its memorized action se-

quence is unsuccessful, the LLM dynamically integrates world knowledge and spatial

information to reorient itself toward the Goal. This behavior mirrors the kind of flexible

insight-driven problem solving found in humans, albeit in a primitive form.

Importantly, the LLM’s success despite minimal training data (only Level 1 used for

RL training and Level 2 given as an in-context example) reinforces the idea that LLMs

are well-suited for low-data, high-abstraction tasks. Their ability to form an internal

representation of the environment allows them to generalize over structured domains

even in the absence of embodied trial-and-error.

However, the LLM’s failure to reliably exploit the Key-KeyDoor interaction, despite
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being told about it by the NLWM, reveals a limitation in their ability to perform com-

plex reasoning. LLMs may struggle to internalize multi-step relational transition ef-

fects when those dependencies must be translated into concrete action sequences. This

opens an important avenue for future work: augmenting LLMs with mechanisms to

better integrate and reason over causal object relations, perhaps through structured

memory modules or hybrid symbolic interfaces.



8 General Discussion

This study set out to explore the efficacy of natural language world model (NLWM)

prompting as a means of grounding large language models (LLMs) in an embodied

environment. The immediate takeaway is that while NLWMs do induce some degree

of implicit environmental understanding in LLMs, this understanding is shallow and

often insufficient for improving overall task competence. That is, LLMs can sometimes

make use of knowledge provided through NLWMs, but this does not reliably translate

into successful task execution. These results reinforce a crucial insight: possession of a

semantic understanding of an environment is not equivalent to being grounded in it.

8.1 Implications Within This Study

The results offer strong evidence that semantic descriptions of an environment, such

as those provided by NLWMs, can improve interaction-level behavior. LLMs exposed to

NLWMs were more likely to utilize relevant objects in the environment (e.g., pushing

crates onto buttons or walking through FalseWalls), suggesting a partial alignment be-

tween their linguistic understanding and the environment’s transition dynamics. How-

ever, this partial alignment did not result in a statistically significant increase in task

completion, highlighting a disconnect between semantic knowledge and actionable un-

derstanding.

This limitation becomes particularly evident in tasks requiring multi-step planning

or indirect object manipulation. LLMs often failed to chain together discoveries into

coherent, goal-directed behaviors, even when they could articulate those discoveries in

natural language. For instance, in Level 5, LLMs were explicitly told how to use the Key

and KeyDoor to solve the task, but failed to execute the necessary action sequences to

do so. Conversely, RL agents, despite being unable to explain the environment in any

interpretable sense, could complete some tasks simply by repeating memorized action

sequences. This contrast suggests that the capacity to describe the environment and

the ability to act effectively within it are fundamentally distinct forms of knowledge.
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In short, the use of NLWMs does enable LLMs to expand their conceptual representa-

tion of an environment, but it does not guarantee that this expansion will be leveraged

for improved task competence. The bottleneck lies not in knowledge acquisition but in

knowledge application.

8.2 Implications Beyond This Study

These findings resonate with broader concerns in the fields of AI alignment and grounded

reasoning. Specifically, they challenge the assumption that semantic grounding can sub-

stitute for embodied understanding. An agent that “knows” what a button does, or can

articulate how a key interacts with a door, may still fail to execute a plan involving

those objects. This distinction mirrors a long-standing insight in cognitive science: pos-

sessing declarative knowledge about a process is not the same as possessing procedural

fluency in enacting it Anderson, 1982.

This discrepancy points toward a fundamental limitation of current LLMs. They are

powerful pattern matchers trained on language, not agents with integrated sensory or

motor experience. Thus, while they can learn from static descriptions, they struggle to

apply what they learn to embodied environments. One promising direction for future

work may involve giving LLMs the opportunity to self-discover environment dynam-

ics through exploration, rather than merely being told about them. This would more

closely mirror human learning, where knowledge is constructed through interaction,

not just instruction.

Moreover, the finding that LLMs frequently avoided using the very transition dy-

namics described in NLWMs (opting instead for simpler, previously successful strate-

gies) suggests that even when LLMs do possess the requisite information, they may not

judge its utility correctly. This behavior implies a need for mechanisms that help mod-

els prioritize and sequence discovered knowledge appropriately. Integrating memory,

causal inference, and structured reasoning modules may help close the gap between

semantic representation and actionable understanding. These external tools go beyond

the scope of mere prompting, reinforcing the idea that semantic understanding is in-

sufficient for grounding LLMs.

Finally, the limitations of NLWM prompting suggest caution in applications where

LLMs must operate in novel environments with limited real-time feedback. In robotics,

autonomous navigation, or simulation-based education, reliance on language-based

grounding alone may not be sufficient to ensure effective behavior. Grounding in these

domains likely requires richer feedback loops, either through multi-modal sensors or
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through mechanisms that allow agents to revise their internal models in response to

failed actions.

8.3 Reframing Grounding as a Multi-Stage Process

Perhaps the most significant implication of this work is the reframing of grounding not

as a binary property—grounded vs. ungrounded, but as a spectrum composed of mul-

tiple stages: semantic acquisition, implicit internalization, and procedural competence.

NLWMs appear to support the first stage and partially enable the second, but fail to

bridge the final gap to competence. Bridging that gap will require new mechanisms

that connect high-level semantic understanding to embodied reasoning and planning.

This reframing also encourages more nuanced metrics for evaluating LLMs in em-

bodied tasks. Success should not merely be judged by whether an agent can “name

the parts” of an environment or describe its dynamics, but by its ability to use that

understanding to reason, plan, and adapt behavior over time. The partial success of

LLMs in the Interaction metric suggests that current models are on the verge of more

meaningful grounding, but still lack the architectural components needed to cross that

threshold.

8.4 Summary

This study contributes to the growing literature on LLMs in embodied domains by

demonstrating both the promise and limitations of lightweight grounding via natural

language. NLWMs can prime LLMs to recognize surface affordances and form rudi-

mentary internal models of an environment, but these internal models often lack the

robustness and adaptability needed to drive reliable planning or problem-solving. The

findings call for a broader perspective on grounding, one that embraces embodiment,

exploration, and reasoning as integral components of competent agency.



9 Future Work

There remains ample space for future work following this study. Our results show that

while NLWMs grant LLMs’ some form of internal representation, they does not lead to

an improvement in overall competency. A logical next step would be to take further

lightweight grounding measures to determine how much is necessary to significantly

improve model performance at this task.

Such methods could include providing LLMs with environment feedback, thereby al-

lowing them to learn the consequences of their actions in-context. This form of ground-

ing is common in previous work (Dasgupta et al., 2023b; Huang et al., 2022), and my

results show that is may still be necessary for developing LLM agents capable of em-

bodied insight problem solving.

Another direction to explore focuses on self-discovery. My study shows that gold-

standard NLWM prompting alone does not improve the overall competence of LLM

agents. It’s possible that agents can learn the utility of discovers more effectively if they

find them on their own. To that end, developing a system by which LLM agents can

explore the environment on their own and utilize their findings may enhance their abil-

ity to solve problems like the ones presented in this study. Such a study would require

methods to not only guide LLMs towards exploration, but also to verify the correctness

of new theorized discoveries and later exploit verified discoveries. Potential approaches

to these problems may include self-verification (though Stechly et al., 2024 questions

the efficacy of such methods) or the use of symbolic knowledge representations to sup-

plement parametric memory and reasoning.
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10 Conclusion

In this paper, I set out to answer a key question at the interaction of LLM reasoning

and embodied problem solving: Can large language models be grounded in physical

environments using natural language alone? Specifically, I explored whether natural

language world models (NLWMS), concise textual descriptions of environment tran-

sition dynamics, could induce an internal representation of the environment in LLMs.

This work is critical for the development of insight problem solving agents for embodied

tasks.

To answer the central question of this paper, I presented ESCGRIDENV, a novel 2D

OpenAI Gym environment designed for embodied insight problem solving. Specifically,

the environment tests the abilities of AI agents to form and exploit internal representa-

tions of the envirnment and its transition dynamics. With this environment, I evaluated

the performance of reinforcement learning and LLM agents across a variety of embod-

ied puzzles.

The results of my experiments show that NLWM prompting reliably increased LLMs’

likelihood of interacting with relevant objects, showing that language-based knowledge

can help structure agent behavior to embodied environments. However, the benefits of

NLWM prompting did not translate into higher task completion rates. LLMs often failed

to combine discoveries into coherent action plans, and tended to favor simpler solu-

tions over new solutions that required more complex reasoning patterns. This finding

reveals a disconnect between semantic understanding and embodied competence; that

is, the difference between knowing how the environment works and knowing how to

act within it.

The limitations observed extend beyond this particular environment. They speak

to the broader challenge of grounding AI agents not just semantically, but function-

ally. The ability to describe the world is not the same as being situated within it.

True grounding likely requires mechanisms for exploration, feedback, memory, and

abstraction—components that go beyond prompting alone. Even so, the potential of

NLWMs as lightweight grounding tools remains compelling. They offer a scalable, in-
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terpretable way to seed knowledge into LLMs, laying a foundation upon which more

robust grounded reasoning systems can be built.

In bridging natural language and embodied experience, this study contributes to

our understanding of what it means for LLMs to understand their surroundings. It calls

for a reconception of grounding as a layered, interactive process, and points toward a

future where agents can not only read the rules of the world, but play by them with

insight and intention.



11 Limitations

While this study has revealed several key insights, there remain several limitations to

consider. First, all evaluation metrics were automated and binary in nature, which may

not fully capture the nuances of LLM grounding. Although I analyzed a few of the

LLM reasoning traces, more extensive human judgments are needed to gain a compre-

hensive picture of plan coherence, creativity, alignment with task goals, among other

potential manual evaluation metrics. Incorporating manual evaluations would provide

a richer and potentially more accurate understanding of how well LLMs understand

their surrounds.

Secondly, this study did not include recent state-of-the-art language models (e.g.,

GPT-4o, Llama-4) or vision-language models that could perceive raw observations di-

rectly. As model capabilities continue to advance, it remains unclear whether the ob-

served effects of NLWM prompting would scale to much larger or multi-modal architec-

tures.

Third, while the abstractness of ESCGRIDENV allowed me to isolate agents’ ability

to reason about entirely unfamiliar environments and lessen the impact of functional

fixedness, the real-world is rich with multi-modal stimuli that can often be effectively

exploited using pretrained biases. As a result, my findings may not generalize to tasks

involving more helpful visual or natural language feedback.
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A Prompting Strategies

I used four different prompts for the different combinations of independent variables

used in the LLM experiment. I now provide each prompt below as well as the conditions

that required their use.

A.1 Without NLWM, Zero-Shot Prompting

[Prompt] You are a planner for an agent in a 2D GridWorld environment. You are

given an observation of the environment. You are also given a goal that the agent must

achieve.

Your task is to generate a high-level plan that the agent can follow to achieve its

goal. Then, generate a low-level action sequence that the agent can execute to achieve

its goal.

[Observation] {obs}

[Goal] The agent must move to the same cell as the Goal object

[Plan]

A.2 Without NLWM, CoT Prompting

[Prompt] You are a planner for an agent in a 2D GridWorld environment. You are

given an observation of the environment. You are also given a goal that the agent must

achieve.

Your task is to generate a high-level plan that the agent can follow to achieve its goal.

Then, generate a low-level action sequence that the agent can execute to achieve its

goal. Below is an example observation, goal and plan. Use the example as a reference

for your own problem solving steps.
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[EXAMPLE]

[Observation] The agent is located at (5, 8). A green object is located at (19, 13).

A brown border forms an enclosure around the agent as well as all objects except the

green object, and the green object at (19, 13) There is an opening in the enclosure at

(18, 13).

[Goal] The agent must move to the same cell as the Goal object.

[Plan] First determine that the green object is the Goal object. Align the agent on

the horizontal axis (y=13) by moving DOWN. Because the agent is at y=8, it must

move DOWN 13 - 8 = 5 times. Next, move the agent to reach the goal (x=19) by

moving RIGHT. Because the agent is at x=5, it must move RIGHT 19 - 5 = 14 times.

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[ACTUAL]

[Observation] {obs}

[Goal] The agent must move to the same cell as the Goal object.

[Plan]

A.3 With NLWM, Zero-Shot Prompting

[Prompt] You are a planner for an agent in a 2D GridWorld environment. You are

given an observation of the environment. You are also given a goal that the agent must

achieve. You are also given a set of transition effects associated with objects in the

environment.

Your task is to generate a high-level plan that the agent can follow to achieve its

goal. Then, generate a low-level action sequence that the agent can execute to achieve

its goal.

[Observation] {obs}

[Goal] The agent must move to the same cell as the Goal object

[Transition Effects] {nlwm}

[Plan]
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A.4 With NLWM, CoT Prompting

[Prompt] You are a planner for an agent in a 2D GridWorld environment. You are

given an observation of the environment. You are also given a goal that the agent must

achieve. You are also given a set of transition effects associated with objects in the

environment.

Your task is to generate a high-level plan that the agent can follow to achieve its goal.

Then, generate a low-level action sequence that the agent can execute to achieve its

goal. Below is an example observation, goal and plan. Use the example as a reference

for your own problem solving steps.

[EXAMPLE]

[Observation] The agent is located at (5, 8). A green object is located at (19, 13).

A brown border forms an enclosure around the agent as well as all objects except the

green object, and the green object at (19, 13) There is an opening in the enclosure at

(18, 13).

[Goal] The agent must move to the same cell as the Goal object.

[Transition Effects] - Green: The green object is the Goal that the agent must reach.

- Brown: Brown objects are False Walls. The agent can move through False Walls.

[Plan] First determine that the green object is the Goal object. Align the agent on

the horizontal axis (y=13) by moving DOWN. Because the agent is at y=8, it must

move DOWN 13 - 8 = 5 times. Next, move the agent to reach the goal (x=19) by

moving RIGHT. Because the agent is at x=5, it must move RIGHT 19 - 5 = 14 times.

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[ACTUAL]

[Observation] {obs}

[Goal] The agent must move to the same cell as the Goal object.

[Transition Effects] {nlwm}

[Plan]
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